Diagonal similarity and equivalence for matrices over groups with 0
نویسندگان
چکیده
منابع مشابه
Diagonal Similarity and Equivalence for Matrices
the cyclic products of matrices and diagonal similarity. In this paper we consider diagonal similarity for matrices, which may be infinite, and whose elements lie in a (possible non-commutative) group G with O. Let H be a subgroup of a group G and let A be an irreducible square matrix with entries in GO. In Theorem 3.4, we give necessary and sufficient conditions for the existence of a matrix B...
متن کاملOne-sided simultaneous inequalities and sandwich theorems for diagonal similarity and diagonal equivalence of nonnegative matrices
Results on the simultaneous scaling of nonnegative matrices involving one sided inequalities are presented. These are applied to scalings involving two sided inequalities. The proofs are graph theoretic. The setting is generalized to matrices with elements in lattice ordered Abelian groups with 0.
متن کاملFlows on graphs applied to diagonal similarity and diagonal equivalence for matrices
Three equivalence relations are considered on the set of n x n matrices with elements in Fo' an · abelian group with absorbing zero adjoined. They are the relations of diagonal similarity, diagonal equivalence, and restricted diagonal equivalence. These relations are usually considered for matrices with elements in a field, but only multiplication is involved. Thus our formulation in terms of a...
متن کاملEla One-sided Simultaneous Inequalities and Sandwich Theorems for Diagonal Similarity and Diagonal Equivalence of Nonnegative Matrices∗
Results on the simultaneous scaling of nonnegative matrices involving one sided inequalities are presented. These are applied to scalings involving two sided inequalities. The proofs are graph theoretic. The setting is generalized to matrices with elements in lattice ordered Abelian groups with 0.
متن کاملBlock Diagonal Majorization on $C_{0}$
Let $mathbf{c}_0$ be the real vector space of all real sequences which converge to zero. For every $x,yin mathbf{c}_0$, it is said that $y$ is block diagonal majorized by $x$ (written $yprec_b x$) if there exists a block diagonal row stochastic matrix $R$ such that $y=Rx$. In this paper we find the possible structure of linear functions $T:mathbf{c}_0rightarrow mathbf{c}_0$ preserving $prec_b$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1975
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1975.101334